Instabilities in the two-dimensional cubic nonlinear Schrödinger equation
نویسندگان
چکیده
منابع مشابه
Instabilities in the two-dimensional cubic nonlinear Schrödinger equation.
The two-dimensional cubic nonlinear Schrödinger equation (NLS) can be used as a model of phenomena in physical systems ranging from waves on deep water to pulses in optical fibers. In this paper, we establish that every one-dimensional traveling wave solution of NLS with linear phase is unstable with respect to some infinitesimal perturbation with two-dimensional structure. If the coefficients ...
متن کاملInstabilities of one-dimensional trivial-phase solutions of the two-dimensional cubic nonlinear Schrödinger equation
The two-dimensional cubic nonlinear Schrödinger equation (NLS) is used as a model of a wide variety of physical phenomena. In this paper, we study the stability of a class of its one-dimensional, periodic, traveling-wave solutions. First, we establish that all such solutions are unstable with respect to two-dimensional perturbations with long wavelengths in the transverse dimension. Second, we ...
متن کاملDrag force in bimodal cubic-quintic nonlinear Schrödinger equation.
We consider a system of two cubic-quintic nonlinear Schrödinger equations in two dimensions, coupled by repulsive cubic terms. We analyze situations in which a probe lump of one of the modes is surrounded by a fluid of the other one and analyze their interaction. We find a realization of D'Alembert's paradox for small velocities and nontrivial drag forces for larger ones. We present numerical a...
متن کاملRogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation
In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota's bilinear method. Like the nonlocal NLS equation, th...
متن کاملArtificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations
This paper addresses the construction of nonlinear integro-differential artificial boundary conditions for one-dimensional nonlinear cubic Schrödinger equations. Several ways of designing such conditions are provided and a theoretical classification of their accuracy is given. Semi-discrete time schemes based on the method developed by Durán and Sanz-Serna [IMA J. Numer. Anal. 20 (2) (2000), pp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2003
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.68.045601